
1

Variables without Assignments
Avery D Andrews
ANU, April 2011

It often appears to be assumed that the use of variable(-like component)s in linguistic
structures requires the use of assignments of values to those variables in order to in-
terpret them semantically in set-based model theory (see Jacobson (2005:186-187) for
a recent example). In this note I will show how the use of assignments can be avoided
by means of ‘indeterminates’ in closed cartesian categories (CCCs), as explained in
Lambek and Scott (1986:47-65) (henceforth LS). People who know this material need
read no further, because the point is actually rather obvious (in spite of the embarrass-
ingly long time it took me to notice it), and, except for the appendix, the remainder
of this note is just an attempt to present the basic idea in such a way that people who
haven’t really learned about CCCs will have some idea of how it works, plus a simple
application to LFG glue semantics. In particular, I make no claims for any specific
empirical advantage for this technique over the use of assignments, but simply point
out that it provides an alternative, and neither do I claim any original mathematical
content, since the application of LS is simple and immediate.

In spite of this general disclaimer, this approach perhaps has a conceptual advantage
over assignments, which is that it works because of the intrinsic properties of the set-
based model theoretic interpretations, in particular, that they have enough in common
with CCC’s to make LS’ Functional Completeness Theorem hold. This is false for
some systems for which assignments can be used, such as some of the intensional logic
systems in Muskens (2007) (the ones where alpha-equivalence doesn’t hold), and not
obviously true (at least to math beginners) for others, such as the one he proposes for
linguistic semantics (i.e., FCT would need to be proved for this system, and hasn’t
been afaik). So I think that the question of whether NL semantics can be done in a
system with indeterminates rather than variables is not entirely without interest.

I won’t attempt a full presentation of the required category theory here,1 but only
sketch those of the rudiments that are most immediately relevant to making the point at
least somewhat comprehensible. After demonstrating the variable-elimination method,
I will apply it to the semantic interpretation of glue proof-nets, and, in an appendix,
briefly show how to derive the construction in a more principled manner (this will not
be intelligible to people without substantial background).

1For a brief presentation, see Pierce (1991); for a more comprehensive treatment with hundreds
of solved exercises, Barr and Wells (1999a). Lawvere and Schanuel (1997) might also be helpful,
along with many other introductions to this subject. The basics of universal algebra as presented for
example in Burris and Sankappanavar (1981) would be a useful prerequisite. Some other resources
include the earlier years of John Armstrong’s blog ‘The Unapologetic Mathematician’, and Eugenia
Cheng’s and Simon Willerton’s ‘The Catsters’ channel on Youtube.

2

1 Category Basics

A category consists of two ‘collections’2 obeying some laws. One collection is of ‘ob-
jects’, the other of ‘arrows’, and the laws are:

(1) a. Source/Target: In a category C , any arrow f has exactly one object of C as its
source and one (possibly the same, possibly different) as its target. f ∶A→ B

means that f is an arrow with A as its source and B as its target (deliberately
the same as function notation).

b. Composition: if f ∶A→ B and g ∶B → C are arrows of C , then C has an arrow
gf ∶A→ C (a composition operation symbol such as ‘○’ is often used, but we’ll
follow LS and just use juxtaposition).

c. Identities: for any object C of C here is an arrow IdC ∶C → C of C such that,
given f ∶A→ B, IdBf = f and fIdA = f

d. Associativity: given f ∶A→ B,g ∶B → C,h ∶C →D, then (hg)f = h(fg).

The only category we’ll consider here is the one called Sets, which has ordinary sets as
its objects, and functions as its arrows, (e.g. Partee et al. (1993)), with one important
technical modification: in set theory, a function is construed as a set of ordered pairs
‘from’ its domain, the set of elements appearing as first members, ‘to’ any set that
contains its range, the set of elements appearing as second members. But a function-
as-arrow must nominate a specific set containing the range to serve as its target. So that
we can for example think of multiplication by 2 as a function from the positive integers
into the positive integers, or from the positive integers into the rational numbers, etc.
But these distinct ‘uses’ of the set-theoretical function have to be taken as distinct
arrows in category theory.3 This can be implemented by having an arrow f ∶A→ B in
sets consist of an ordered pair <f,B> where B ⊆ ranf .

This example is enough to reveal why we spoke of ‘collections’ rather that ‘sets’ of
objects and arrows: there can’t be any set of all sets, due to Russell’s Paradox, but
without a ‘collection’ of all sets (perhaps some kind of ‘proper class’), we couldn’t have
a category of sets. On the other hand, granted the collection of objects, we are in
a somewhat better position for arrows, since, given any two sets A,B, standard set
theory provides for a set of arrows from A to B (standardly notated as BA). This
makes Sets a ‘locally small’ category.

2‘Collection’ rather than ‘set’ in order to avoid commitment to various details about how sets
appear to work, especially ‘size limitations’.

3Which carries some of the appeal of category-theory for computer science, since the implemen-
tation of multiplication by 2 for integers is likely to be quite different from that for rationals or the
‘floats’ that approximate reals.

3

2 Arrows for Members

A basic theme of category theory is not to think at all about the internal structure
of objects, but only in terms of the structure of the relationships between them, as
encoded in the arrows. This creates an immediate problem as to what to do about the
set-theoretical notion of ‘member’, since it seems rather fundamental to set theory that
sets consist of members, which category theory wants to discourage us from thinking
about.

But there is a trick that comes to the rescue, based on the fact that if we take any
one-member set as a given, traditionally notated as {∗}, the traditional members of
any other set A are in one-to-one correspondence with arrows from {∗} to A. Such
arrows are called ‘elements’; we will be rigorous about only using the term ‘member’
for traditional set-theoretical members, and ‘element (of A)’ for arrows from {∗} to A.

But of course we haven’t broken free from the notion of ‘membership’ if our concept of
‘element’ depends on the idea of a set with one member, so it is fortunate that there’s
a purely arrow-based version of that idea too, ‘terminal object’:

(2) An object T of a category C is a terminal object iff, for any object A of C , there
is a unique arrow of C from A to T , which we’ll notate as ◯A.

‘Unique’ here meaning given any putative arrow f ∶A→ T , it can be proved that f =
◯A (no use of a membership concept required). {∗} is clearly a terminal object (by
extensionality of functions). Terminal objects (lots of them) provably exist in Sets,
and are the easiest-to-understand requirement for a category to be a CCC, where the
symbol 1 is the commonest choice for the terminal object.

So now we can define an ‘membership-free’ notion of element as follows:

(3) In category with a terminal object 1, an element of an object A is an arrow
f ∶1→ A.

3 Products

The next apparatus we need for a CCC is called ‘products’, including a ‘product object’
and various accessory arrows, obeying some laws. The usual choice of product object
for Sets is the regular cartesian product: given any two objects/sets A,B, we have the
product object/set A ×B. One major piece of the apparatus is the ‘pairing’ operation
on arrows: given arrows f ∶C → A and g ∶C → B, it is required that there be a pairing
arrow <f, g> ∶C → A ×B. Standardly for Sets, this will be the function c↦ <f(c), g(c)>.

This might be expected to induce a clash with the regular ordered pair notation for
set theory, but actually, it doesn’t. For in place of members a, b, we’ll have elements
a ∶1→ A, b ∶1→ B. But then <a, b> will be an arrow from 1 to A × B, and, given the
various principles that we haven’t gone thru here, it will be the correct one, namely, the

4

arrow that goes from {∗} to the conventional ordered pair <a(∗), b(∗)>. So everything
works out nicely.

A category with a terminal object, products, and the associated accessories all obeying
the laws properly is called a ‘Cartesian Category’ (CC).

4 Exponentials and CCCs

The final piece of apparatus for a CCC is called an ‘exponential’, and in Sets, the
exponential object ‘from’ A ‘to’ B is the function-space BA (happily, we turn out not
to have to worry about explicitly packing the members/elements of BA with their
target B). Amongst the bits and pieces that comes with it, all we need here is the
‘evaluation arrow from A to B’, evA,B ∶BA ×A→ B, which takes a pair <f, a>, where f
is a member of BA, and A is a member of A, and maps this pair to the member f(a)
of B. This is enforced by laws involving arrows, which provide as a by-product for the
‘currying’ of functions of two-variables (i.e. whose domains are products).4

We now enough to set up a semantics for function-evaluation expressions. Traditionally,
a proper name such as Uther might be modelled by a member of some set E (for
‘entities’), while intransitive verb such as sleep would be modelled as a member of BE,
B for ‘boolean value’, i.e. something like {0,1}, where ‘1’ is taken as meaning ‘truth’
(or maybe ‘P ’ for ‘proposition’, if we want to take on (hyper)intensionality). In our
category theoretic remodelling, these two ‘members’ will be replaced by elements, i.e.
arrows from 1. Then, to evaluate an expression such as Sleeps(Uther), what we do is
make a pair and compose evE,B with it:

(4) evE,B<sleep,Uther>

The result of composing these arrows will be an element of B, i.e. a truth-value,
as desired (or some more complicated kind of thing, such as a ‘proposition’, in an
intensional or hyperintensional model).

Dealing with curried functions as meanings for transitive verbs is done with multiple
evaluation arrows of the appropriate types. An interpretation for ‘love’ might for
example be an element of BEE

(other notations for the exponential get more convenient
here, such as [E⇒E⇒B], with implicit association to the right), with the interpretation
of loves(Gwen)(Lance) (implicit association to the left) being:

(5) evE,B<evE,E⇒B<love,Gwen>,Lance>

It is then convenient to informally notate (5) as love(Gwen)(Lance), which could be
intepreted as a formula in a formal language, but can also be viewed as informal
notation of (5).

4LS is on the whole a bit crisp to serve as an introduction to category theory, but the working
through of this part of the material is as clear as any other that I’ve seen.

5

Replacing members with elements has set us up for indeterminates, to which we procede
now.

5 Indeterminates

The idea of adjoining indeterminates to a CCC is as follows. An element of a set A in
the category Sets is an arrow from 1 to A. Traditionally, one might represent it like
this:

(6) 1 A

a

∗ b

c
c

Here the graphical arrow, labelled ‘c’, goes from ∗ to the specific member of A, also
designated ‘c’, that the element c maps ∗ to.

But since we’re not supposed to be interested in internal structure, amore ‘categorically
correct’ picture would be:

(7) 1 A

a

∗ b

c

c

The point being that, considered categorically, functions, including elements, are just
a kind of ‘blob-connector’.

This leads to the following thought: Suppose we start with Sets (or, more modestly,
just that corner of Sets where are models live, E, B and the objects and arrows we can
make with the elements of these sets and the CCC apparatus),5 and just add to it some
additional arrows from 1 to E (or any other of our objects). Such an ‘indeterminate’
arrow can be diagrammatically represented like this:

5Which has the nice property of being a small and full subcategory of Sets.

6

(8) 1 E

a

∗ b

c

x

Of course a priori we can’t just assume this is possible, but LS prove that it can be
done, yielding from a CCC C a new, uniquely determined (up to ‘isomorphism’) CCC
that we can notate as C [x].6

The situation is highly analogous to taking a ring R and adding to it a variable x

(also sometimes called an ‘indeterminate’ iirc) to get the ring of polynomials in x, and
various things are provable in both situations, such as that the results of ‘adjoining’
different indeterminates to the same category are isomorphic (C [x] ≅ C [y]), and that
adjunction of indeterminates can be iterated to get C [x][y] (≅ C [y][x]).

To use indeterminates to do the work of variables, we will need some way to ‘eliminate’
them (equivalent to binding a variable), which is achieved with the ‘Functional Com-
pleteness Theorem’, but first we need to tweak evaluation to deal with indeterminates
in syntactic structures. Indeterminates are going to serve as interpretations for syntac-
tic ‘variables’, with the effect that using them is going to change the category in which
we look for an interpretation. Treating our formulas such as loves(Gwen)(Lance) as
expressions in a language with binary-brancing structure:

(9) S

t

VP

e→t

love

e→e→t

NP

Gwen

e

NP

Lance

e

We can say that the interpretations of the terminal nodes are found in Sets, and
likewise for the phrases, by our equivalent of function application.

But suppose we use indeterminates as interpretations for items such as ‘traces’ or
bound pronouns, perhaps to get a semantics for relative clauses such as who Lance

6Indeed, they work though three ways of doing it, two of them ‘syntactic’ in flavor, making use of
the free category construction, the other ‘algebraic’, via the co-Kleisli category construction. And an
additional ‘algebraic’ construction is pointed out in the exercises. ‘Algebraic’ meaning that nothing
based on an expression in any language is involved.

7

loves. We can say that the putatively empty/‘trace’ NP in object position gets for
its interpretation the indeterminate x, but now the interpretation for loves e will be
evE,E⇒B<love, x>, which is indeed an arrow from 1 to E⇒B, but not one that lies
in Sets, but rather Sets[x]. And then when we combine this with the remaining
argument, we might get an arrow in an even bigger category (if there’s a bound pronoun
in the subject, etc).

So, at each stage of composition, we need to note which indeterminates are needed
in the category of interpretation, when we combine two interpretations, to pool the
indeterminates. Union would seem the appropriate operation for this, since for a
relative clause such as who thinks Gwen loves him, the subject of the relative clause
and the object of its complement clause would presumably use the same indeterminate.
This is highly comparable to keeping track of the variables for which values must be
provided when ‘finitistic’ assignments are used, as in Kratzer and Heim (1998), and
also in Lawvere’s interpretation of first-order quantifers as adjoints.7

6 Functional Completeness and Elimination

Adding indeterminates won’t be useful if we can’t get rid of them, so as to get interpre-
tations back in Sets, where we want our models to live, which is what the Functional
Completeness Theorem (FCT) does. Suppose φ(x) is an arrow in C [x], that is, a com-
bination of arrows from C , together with x (which might appear in one place, many,
or none, in the combination; ‘(x)’ in ‘φ(x)’ is just an allusion the fact that the arrow
might involve x). What this theorem says is that for any such arrow φ(x) ∶1→ B, where
x ∶1→ A, there is a unique arrow h ∶1→ BA of C such that evA,B<h,x> = φ(x). If we
follow the spirit of Jacobson’s work, and think of the x as a sort of ‘contamination’
that is present in some of the arrows of C [x], the theorem says that we can produce
a ‘pure’ arrow of C that can be combined in a simple way with a single instance of
x to produce the same result as the original φ(x). And because this arrow h is the
unique one with the required property, we can denote it with a term based on φ(x)
and x, for which LS’s is λx∈Aφ(x) (the membership notation is used to specify the type
of the indeterminate). One might say that although arrows based on indeterminates
are probably not ‘Healthy Model-Theoretic Objects’ in Jacobson’s sense, the ailment
they have is curable by a systematic process.

One might think that this notation is an introduction of standard lambda-calculus,
and in some respects that is the case (more on this shortly), but not exactly, because
it doesn’t have to be taken as part of any formal language with a definite relationship
to an model-theoretic interpretation, but as in informal mathematical notation for a
mathematical object that is guaranteed by a theorem to exist in the original semantics
category.

Unsurprisingly, the techniques used to prove the theorem are essentially the same as

7Discussed lucidly by Todd Trimble here: http://golem.ph.utexas.edu/category/2007/10/

concrete_groups_and_axiomatic.html

8

those used in variable free semantics, or to define lambda-abstraction in combinatory
logic, but a difference here is the fact that since the arrow so-defined is unique, we can
write a term to designate it without regard to any particular story about how it is to
be produced, since we know that it is uniquely determined, and that there is at least
one way to make it.

A relative clause construction can then be interpreted by means of the FCT in the
obvious way, to get a meaning lying in a category with one less indeterminate. Imitating
Kratzer and Heim’s (1998:96) rule of ‘predicate abstraction’, we can write:

(10) If α is a branching node whose daughters are a relative pronoun indexed with
indeterminate x of type A, and β with interpretation in C [x], then [[α]] =
λx∈A[[β]], with interpretation in C .

It would be nice to have a way of redoing this to eliminate the syncategorematicity,
but I don’t know how to do that now.

7 Application to Glue Semantics

For a more systematic application, we can use these techniques to provide interpreta-
tions in any CCC to LFG’s ‘glue semantics’, essentially by extending Perrier’s (1999)
‘maximal labelling’ of proof nets to apply to tensors as well as implications. This re-
quires glue to be packaged as in Andrews (2010) as propositional linear logic rather
than system F as usual, or first order linear logic (Kokkonidis 2008). As discussed in
the Andrews paper, and in a more relaxed manner in Andrews (2009), it is convenient
for layout (but not technically essential) to first reorganize proof-nets so that the net
for a sentence such as Everybody loves their mother looks like this:

(11) Pf

λ

E1
g Pf

P

E2
g E→P

Eh

Eh

Ej

E2
g ⊗Ej

E1
g E→E ⊗E

λx.[x,x]

E→E

Mother

E→E→P

Love

(E→P)→P
Everybody

9

As discussed in Andrews (2009, 2010), the dashed arrows represent axiom links, while
the solid lines represent the ‘dynamic graph’ of de Groote (1999), oriented upwards,
and the dotted lines connect the ‘positive antecedents’ to their ‘negative antecedents’
as in conventional proof-nets.

We begin by assigning intepretations to the nodes with semantic labels, and the nega-
tive antecedents, as follows:

(12) a. The interpretation of a node with a semantic label is an element of the semantic
type of that node, in the CCC in which interpretations are being found.

b. The interpretation of the negative antecedent of a positive implication is a
unique indeterminate of the type of that antecedent.

Some semantic labels are arbitrary constants, e.g. Love ∶1→ E⇒E⇒P , while others are
specifiable in terms of the CCC ingredients, such as the pronominal meaning λx.[x,x],
expressible in LS’ ‘internal language’ for a CCC as λx∈E<x,x> (the notation used in the
tree follows LFG glue conventions in not specifying the type of the variable).

These values propagate through the net in accordance with the following rules:

(13) a. The semantic value at the source of an axiom link propogates to its target (we
regard the source as the positive polarity node of the two that are linked).

b. The semantic value of the mother of a negative implication (such a mother
is one with two daughters connected by solid lines, one an implication, the
other its antecedent) is the value of the implication applied as a function to
the value of the antecedent as argument.

c. The semantic value of the left and right components of a negative tensor
(positive tensors aren’t used here) are the left and right projections of the
value of the tensor itself.

d. The semantic value of a positive implication (a node with one dotted-line
daughter, its antecedent, and one solid line daughter, its consequent), is the
unique arrow determined by using the FTC to eliminate the indeterminate
assigned to the antecedent.

The result of annotating (11) according the these rules is:

10

(14) Pf

Everybody(λy∈ELove(Mother(y))(y))

λ

λy∈ELove(Mother(y))(y)

E1
g

y

Pf

Love(Mother(y))(y)

P

Love(Mother(y))(y)

E2
g

y

E→P

Love(Mother(y))

Eh

Mother(y)

Eh

Mother(y)

Ej

y

E2
g ⊗Ej

[y, y]

E1
g

y

E→E ⊗E

λx.[x,x]

E→E

Mother

E→E→P

Love

(E→P)→P
Everybody

These labels designate arrows in a CCC, but we need to indicate exactly what CCC
each arrow lies in. A possible source of worry is that a glue proof represents an arrow
in a Symmetric Monoidal Closed Category (SMCC), in which the copying operations
implicit in labels such as λx.[x,x] are impossible, but this doesn’t matter, because
what we’re representing is the images of the SMCC arrows constituting the glue proof
in the CCC(s) where the meanings live.

For the nodes with semantic labels, this category is the CCC C in which the final
interpretation is to be found, while in a positive antecedent labelled with the indeter-
minate x, this category is C [x]. For the nodes whose semantic values are determined
by propagation according to the rules of (13), the categories are determined as follows:

(15) a. If the value at the source of an axiom link lies in C [X], so does that at the
source, where C [X] is C with the indeterminates belonging to the set X of
indeterminates adjoined (some order of of adjunction must be chosen, but

11

which is arbitrary, and X can of course be empty).

b. If the value of a negative implication lies in C [X], and its sister/antecedent
in C [Y], then the value of the consequent/mother of the implication lies in
C [X ∪ Y].

c. If the value of a negative tensor lies in C [X], then so do the values of both
components.

d. If the value of the consequent (solid line/right daughter) of a positive impli-
cation lies in C [X], and its antecedent (dotted line/left daughter is labelled
with x (alternatively, lies in C [x]), then the value of the implication lies in
C [X − x].

These rules might seem rather arbitrary and artificial, but the appendix shows how to
treat them as a technique for computing a semantic value that is determined in a less
arbitrary way.

8 General Consequences

Is there any empirical payoff for replacing assigments with this kind of apparatus? Not
necessarily, but the approach is at least possibly even wrong in the sense that there
are some approaches to model theoretic interpretation that it won’t work with. One
example is the kinds of interpretations constructed in the earlier parts of Muskens
(2007) do not, since they don’t support alpha-equivalence. Another potential problem
is Brasoveanu’s proposals (http://people.ucsc.edu/~abrsvn/P_n_P_Sem.html) to
solve various problems in the interpretation of pronouns with antecedents involved
in quantification by treating assignments as ‘first class citizens’ in the interpretation.
Purging them might well leave us with no adequate account of these problems. A
final example is the ‘compact semantics’ of Grefenstette et al. (2010) and further work
discussed there, in which meanings are inhabitants of a Compact Closed Category,
which is incompatible with being Cartesian Closed.

For now, I will simply take this as evidence that this approach to dealing with variables
at least manages to clamber over the ‘not even wrong’ hurdle, leaving the issue of
whether it’s actually right for the future.

Appendix A Functorial Semantics for Glue

To determine the semantic values produced by the procedure of section 7 in a non-
arbitrary way, we can use Theorem 1 of Babaev and Solov’ev (1982):8

(16) B&S Theorem: A balanced sequent of NJ→,∧ has at most one normal proof.

8With various later simplifications and generalizations, as discussed in Troelstra and Schwichten-
berg (2000, ch. 8) and Aoto and Ono (1994).

12

Since, with appropriate reinterpretation of the connectives, a balanced sequent of in-
tuitionistic −○ ⊗ logic, is also one of NJ→,∧, it follows that such a sequent will have a
unique normal proof in this logic, which will be equivalent to an arrow in a CCC.

But to actually apply the theorem to our situation, a bit of joining and fitting is
required, which is easier if we use the version of the theorem stated and proved in
Troelstra and Schwichtenberg (2000, p. 274):

(17) TS.8.3.4: Let A,B be objects of a free CCC C over a set of proposition-letters
not containing 1. If A⇒B is balanced, then there is at most one arrow from A

to B in C .

To construe a proof-net as a balanced sequent, we:

(18) a. Take the premise formulas of the proof as the lhs of the sequent, and the
conclusion as the rhs,

b. construe the axiom-links as distinct literals,

c. substitute them (by occurrences, not types) in the formulas of the glue sequent
for the literals that they link.

The resulting ‘proof sequent’ will obviously be valid, have the two-property, and have
the original glue sequent as a substitution instance, under a substitution that we’ll call
τ . Construing the (syntactic) ⊗ and −○ connectives in the formulas as product and
exponential of a CCC, with the axiom-links as basic objects, the formulas of the proof
sequent are now objects of a free CCC; when we’re talking about this, we’ll designate
the product and exponential of A,B as A×B and A⇒B, respectively. Next, for each
(full, not sub-) formula of the proof-sequent, we adjoin to this CCC an arrow from 1
to the object/type constituted by that formula, so that we get one indeterminate for
each occurrence of instantiated an instantiated meaning-constructor (a double negative,
each of type fp→fp, will produce two indeterminates). This produces the proof-CCC.

Our claim is then:

(19) a. In the proof-CCC, there is an arrow from 1 to the final type (the formula to
the left of the ⊢).

b. This arrow is unique.

(a) was proved by the construction method of section 7, while (b) can be shown by the
B&S theorem.

The rather minor obstacle is that the theorem applies to arrows in the free CCC over
the axiom-links, without any indeterminates, whereas what we have is an arrow with
them, in the proof-CCC. This can be fixed by using Functional Completeness, which
allows us to assert the following:

13

(20) If c ∶1→ C is an arrow in C [x1] . . . [xn], C a CCC, xi ∶1→ Ai for i = 1, . . . , n,
then there is a unique cF ∶A1 × . . . ×An → C such that cF<x1, . . . , xn> = c
(associations to the right, for definiteness).

Now suppose we have a potentially different c′ ∶1→ C in C [x1] . . . [xn]. We can elimi-
nate the indeterminates to restate c′ as c′F<x1, . . . , xn> But c′F is from A1 × . . . ×An to
C, and is balanced, so, by BS’ theorem, c′F = cF , therefore c = c′.

On the basis of this, we can eliminate indeterminates in the proof category, and map the
results by a CC functor directly into the semantics category, without needing to adjoin
indeterminates to that. This functor can be factored through various intermediate
CCCs, such as the free one generated by the unininstantiated meaning-constructors
from the lexicon (L)), although it remains to be seen if anything truly interesting is
revealed by such factorizations.

References

Andrews, A. D. 2009. Yet another attempt to explain glue. http://arts.anu.edu.

au/linguistics/People/AveryAndrews/Papers.

Andrews, A. D. 2010. Propositional glue and the correspondence architecture of LFG.
Linguistics and Philosophy 33:141–170.

Aoto, T., and H. Ono. 1994. Uniqueness of normal proofs in the {→,∧} fragment of
NJ. Research Report IS-RR-04-0024F, School of Information Science, JAIST (reference
gotten from http://www.nue.riec.tohoku.ac.jp/user/aoto/).

Babaev, A., and S. Solov’ev. 1982. A coherence theorem for canonical morphisms
in cartesian closed categories. Zap. Nauchn. Sem LOM1 88:3–39, 236. also J. Soviet
Math. 20:2263-2279.

Barr, M., and C. Wells. 1999a. Category Theory for Computing Science. Montréal:
Centre de Recherches Mathématiques. 3rd edition. can be ordered from: http://

crm.umontreal.ca/pub/Ventes/CatalogueEng.html. The most essential content for
linguists, but no exercises, can be found in Barr and Wells (1999b), available free online.

Barr, M., and C. Wells. 1999b. Category theory lecture notes for ESSLLI. URL: http:
//www.let.uu.nl/esslli/Courses/barr-wells.html. a condensed version, without
exercises, of Barr and Wells (1999a). It is impressively well targeted on material that
seems likely to be useful to linguists.

Burris, S., and H. Sankappanavar. 1981. A Course in Universal Algebra. Springer Ver-
lag. updated edition available online (Nov 2004) at http://www.thoralf.uwaterloo.
ca/htdocs/ualg.html.

14

de Groote, P. 1999. An algebraic correctness criterion for intuitionistic multiplicative
proof-nets. Theoretical Computer Science 224:115–134. Retrieved 15 November, 2010,
from http://www.loria.fr/~degroote/bibliography.html.

Grefenstette, E., M. Sadrzadeh, S. Clark, B. Coecke, and S. Pulman. 2010. Concrete
sentence spaces for compositional distributional models of meaning. URL: http://
arxiv.org/abs/1101.0309.

Jacobson, P. 2005. Direct compositionality and variable-free semantics: the case of
‘Principle B’ effects. In Direct Compositionality. Oxford University Press.

Kokkonidis, M. 2008. First order glue. Journal of Logic, Language and Infor-

mation 17:43–68. First distributed 2006; URL: http://citeseer.ist.psu.edu/

kokkonidis06firstorder.html.

Kratzer, A., and I. Heim. 1998. Semantics in Generative Grammar. Oxford: Oxford
University Press.

Lambek, J., and P. J. Scott. 1986. Introduction to Higher Order Categorical Logic.
Cambridge University Press.

Lawvere, F. W., and S. H. Schanuel. 1997. Conceptual Mathematics : A First Intro-

duction to Categories. Cambridge University Press.

Muskens, R. 2007. Intensional models for the theory of types. Journal of Symbolic

Logic 72:98–118.

Partee, B. H., A. ter Meulen, and R. E. Wall. 1993. Mathematical Methods in Linguis-

tics. Kluwer. Corrected second printing.

Perrier, G. 1999. Labelled proof-nets for the syntax and semantics of natural languages.
L.G. of the IGPL 7:629–655.

Pierce, B. 1991. Basic Category Theory for Computer Scientists. MIT Press.

Troelstra, A., and H. Schwichtenberg. 2000. Basic Proof Theory. Cambridge University
Press. 2nd edition.

